JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of enterotoxin-coding genes in methicillin-resistant Staphylococcus aureus strains isolated from Mexican haemodialysis patients.

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes severe catheter-related infections in haemodialysis patients ranging from local-site infections and septic thrombophlebitis to bacteraemia but the associated virulence factors and exotoxins remain unclear.

FINDINGS: We employed an in vitro infection model using reconstituted human epithelium (RHE) to analyse the expression profiles of 4 virulence genes and 12 exotoxin-coding virulence genes in 21 MRSA strains isolated from catheter-related infections in 21 Mexican patients undergoing haemodialysis. All 21 strains (100%) expressed the seg, seh, sei, eta, etb, or hla genes coding staphylococcal toxins. Eleven MRSA strains (52.3%) expressed the sea gene coding staphylococcal enterotoxin A, and two strains (9.5%) expressed the v8 gene coding serine protease. The tst, chp, and arcA genes coding toxic shock syndrome toxin 1, chemotaxis inhibitory protein, and arginine deiminase, respectively, were expressed in separate single strains (4.7%). The most frequent expression profile (42.8% of the strains) comprised seg, seh, sei, eta, etb, and hla.

CONCLUSION: It is likely that the SEG, SEH, SEI, ETA, ETB, and Hla toxins may play a role in MRSA catheter-related infections. Consideration of these toxins in the development of a vaccine or as targets for monoclonal antibody therapy could provide an improved therapeutic strategy for the treatment of catheter-related infections in haemodialysis patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app