Add like
Add dislike
Add to saved papers

Unimodal and bimodal random motions of independent exponential steps.

We consider random walks that arise from the repetition of independent, statistically identical steps, whose nature may be arbitrary. Such unimodal motions appear in a variety of contexts, including particle propagation, cell motility, swimming of micro-organisms, animal motion and foraging strategies. Building on general frameworks, we focus on the case where step duration is exponentially distributed. We explore systematically unimodal processes whose steps are ballistic, diffusive, cyclic or governed by rotational diffusion, and give the exact propagator in Fourier-Laplace domain, from which the moments and the diffusion coefficient are obtained. We also address bimodal processes, where two kinds of step are taken in turn, and show that the mean square displacement, the quantity of prime importance in experiments, is simply related to those of unimodal motions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app