Add like
Add dislike
Add to saved papers

Effect of γ-irradiation on expression of tight and adherens junction protein mRNA on in vitro blood-brain barrier model.

We studied the effect of γ-irradiation on HUVEC endothelial cells co-cultured with allogeneic astrocytes. This 2D in vitro model of the blood-brain barrier has the same parameters as cerebral microvascular endothelial cells forming the blood-brain barrier and allows reproducing its functions in vivo. Dose-dependent changes in cell morphology and violation of monolayer integrity were observed. Real-time PCR and immunocytochemical analysis revealed changes in the expression of tight (ZO-1, claudin-5) and adherens junction protein (vascular endothelial cadherin, β-catenin) mRNA. Expression of tight and adherens junction proteins mRNA decreased in 2, 24, and 48 h after irradiation in doses of 2, 4, and 6 Gy. Significant dose-dependent changes were found only for β-catenin mRNA expression in 2 h after exposition. This model of blood-brain barrier in vitro can be used for studying the molecular mechanisms regulating permeability of cerebral endothelium under normal conditions and after pathological exposures, e.g. γ-irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app