OPEN IN READ APP
JOURNAL ARTICLE

Adaptive noise estimation from highly textured hyperspectral images

Peng Fu, Changyang Li, Yong Xia, Zexuan Ji, Quansen Sun, Weidong Cai, David Dagan Feng
Applied Optics 2014 October 20, 53 (30): 7059-71
25402795
Accurate approximation of noise in hyperspectral (HS) images plays an important role in better visualization and image processing. Conventional algorithms often hypothesize the noise type to be either purely additive or of a mixed noise type for the signal-dependent (SD) noise component and the signal-independent (SI) noise component in HS images. This can result in application-driven algorithm design and limited use in different noise types. Moreover, as the highly textured HS images have abundant edges and textures, existing algorithms may fail to produce accurate noise estimation. To address these challenges, we propose a noise estimation algorithm that can adaptively estimate both purely additive noise and mixed noise in HS images with various complexities. First, homogeneous areas are automatically detected using a new region-growing-based approach, in which the similarity of two pixels is calculated by a robust spectral metric. Then, the mixed noise variance of each homogeneous region is estimated based on multiple linear regression technology. Finally, intensities of the SD and SI noise are obtained with a modified scatter plot approach. We quantitatively evaluated our algorithm on the synthetic HS data. Compared with the benchmarking and state-of-the-art algorithms, the proposed algorithm is more accurate and robust when facing images with different complexities. Experimental results with real Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images further demonstrated the superiority of our algorithm.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
25402795
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"