Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element.

Optics Express 2014 November 18
We report on the development of a high-resolution see-through integral imaging system with a resolution and fill factor-enhanced lens-array holographic optical element (HOE). We propose a procedure for fabricating of a lens pitch controllable lens-array HOE. By controlling the recording plane and performing repetitive recordings process, the lens pitch of the lens-array HOE could be substantially reduced, with a high fill factor and the same numerical aperture compared to the reference lens-array. We demonstrated the feasibility by fabricating a lens-array HOE with a 500 micrometer pitch. Since the pixel pitch of the projected image can be easily controlled in projection type integral imaging, the small lens pitch enhances the quality of the displayed 3D image very effectively. The enhancement of visibility of the 3D images is verified in experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app