Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of Transient Receptor Potential Vanilloid 4 is Involved in Neuronal Injury in Middle Cerebral Artery Occlusion in Mice.

Transient receptor potential vanilloid 4 (TRPV4) is widely expressed in the central nervous system and can be activated by multiple stimuli during cerebral ischemia. Recently, we reported that intracerebroventricular (icv.) injection of HC-067047, a specific TRPV4 antagonist, reduced brain infarction following 60-min of middle cerebral artery occlusion (MCAO). This study was undertaken to investigate the molecular mechanisms underlying TRPV4-mediated neuronal injury in cerebral ischemia. We demonstrated that TRPV4 expression was upregulated in the ipsilateral hippocampus at 4 to 48 h post-MCAO, peaking at 18 h post-MCAO. Treatment with TRPV4 antagonists (HC-067047 and ruthenium red) dose-dependently reduced brain infarction at 24 h post-MCAO. Phosphorylation of protein kinase B (p-Akt) was downregulated and that of extracellular signal-related kinase (p-ERK) was upregulated at 8 to 24 h post-MCAO, which was markedly blocked by treatment with HC-067047. Icv. injection of GSK1016790A (a TRPV4 agonist), dose-dependently induced hippocampal neuronal death, accompanied by an increase in phosphorylation of the NR2B subunit of the N-methyl-D-aspartate receptor (NMDAR). In addition, the level of p-Akt was decreased and that of p-ERK was increased by GSK1016790A-injection, which was sensitive to an NR2B antagonist. The neuronal toxicity of GSK1016790A was blocked by treatment with an NR2B antagonist and a phosphatidylinositol-3-kinase (PI3K) agonist but not by administration of a MAPK/ERK kinase antagonist. We conclude that the activation of TRPV4 is upregulated and involved in neuronal injury during cerebral ischemia and that the neurotoxicity associated with TRPV4-activation is mediated through NR2B-NMDAR and the related downregulation of the Akt signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app