JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney.

Vascular endothelial growth factor A (VEGFA) production by podocytes is critical for glomerular endothelial health. VEGFA is also expressed in tubular epithelial cells in kidney; however, its physiologic role in the tubule has not been established. Using targeted transgenic mouse models, we found that Vegfa is expressed by specific epithelial cells along the nephron, whereas expression of its receptor (Kdr/Vegfr2) is largely restricted to adjacent peritubular capillaries. Embryonic deletion of tubular Vegfa did not affect systemic Vegfa levels, whereas renal Vegfa abundance was markedly decreased. Excision of Vegfa from renal tubules resulted in the formation of a smaller kidney, with a striking reduction in the density of peritubular capillaries. Consequently, elimination of tubular Vegfa caused pronounced polycythemia because of increased renal erythropoietin (Epo) production. Reducing hematocrit to normal levels in tubular Vegfa-deficient mice resulted in a markedly augmented renal Epo production, comparable with that observed in anemic wild-type mice. Here, we show that tubulovascular cross-talk by Vegfa is essential for maintenance of peritubular capillary networks in kidney. Disruption of this communication leads to increased renal Epo production and resulting polycythemia, presumably to counterbalance microvascular losses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app