JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Paretic Propulsion and Trailing Limb Angle Are Key Determinants of Long-Distance Walking Function After Stroke.

BACKGROUND: Elucidation of the relative importance of commonly targeted biomechanical variables to poststroke long-distance walking function would facilitate optimal intervention design.

OBJECTIVES: To determine the relative contribution of variables from 3 biomechanical constructs to poststroke long-distance walking function and identify the biomechanical changes underlying posttraining improvements in long-distance walking function.

METHODS: Forty-four individuals >6 months after stroke participated in this study. A subset of these subjects (n = 31) underwent 12 weeks of high-intensity locomotor training. Cross-sectional (pretraining) and longitudinal (posttraining change) regression quantified the relationships between poststroke long-distance walking function, as measured via the 6-Minute Walk Test (6MWT), and walking biomechanics. Biomechanical variables were organized into stance phase (paretic propulsion and trailing limb angle), swing phase (paretic ankle dorsiflexion and knee flexion), and symmetry (step length and swing time) constructs.

RESULTS: Pretraining, all variables correlated with 6MWT distance (rs = .39 to .75, Ps < .05); however, only propulsion (Prop) and trailing limb angle (TLA) independently predicted 6MWT distance, R(2) = .655, F(6, 36) = 11.38, P < .001. Interestingly, only ΔProp predicted Δ6MWT; however, pretraining Prop, pretraining TLA, and ΔTLA moderated this relationship (moderation model R(2)s = .383, .468, .289, respectively).

CONCLUSIONS: The paretic limb's ability to generate propulsion during walking is a critical determinant of long-distance walking function after stroke. This finding supports the development of poststroke interventions that target deficits in propulsion and trailing limb angle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app