JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preparation of double emulsions using hybrid polymer/silica particles: new pickering emulsifiers with adjustable surface wettability.

A facile route for the preparation of water-in-oil-in-water (w/o/w) double emulsions is described for three model oils, namely, n-dodecane, isopropyl myristate, and isononyl isononanoate, using fumed silica particles coated with poly(ethylene imine) (PEI). The surface wettability of such hybrid PEI/silica particles can be systematically adjusted by (i) increasing the adsorbed amount of PEI and (ii) addition of 1-undecanal to the oil phase prior to homogenization. In the absence of this long-chain aldehyde, PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) produce o/w Pickering emulsions in all cases. In the presence of 1-undecanal, this reagent reacts with the primary and secondary amine groups on the PEI chains via Schiff base chemistry, which can render the PEI/silica hybrid particles sufficiently hydrophobic to stabilize w/o Pickering emulsions at 20 °C. Gas chromatography, (1)H NMR and X-ray photoelectron spectroscopy provide compelling experimental evidence for this in situ surface reaction, while a significant increase in the water contact angle indicates markedly greater hydrophobic character for the PEI/silica hybrid particles. However, when PEI/silica hybrid particles are prepared using a relatively low adsorbed amount of PEI (PEI/silica mass ratio = 0.075) only o/w Pickering emulsions are obtained, since the extent of surface modification achieved using this Schiff base chemistry is insufficient. Fluorescence microscopy and laser diffraction studies confirm that highly stable w/o/w double emulsions can be achieved for all three model oils. This is achieved by first homogenizing the relatively hydrophobic PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) with an oil containing 3% 1-undecanal to form an initial w/o emulsion, followed by further homogenization using an aqueous dispersion of relatively hydrophilic PEI/silica particles (PEI/silica mass ratio = 0.075). Dye release from the internal aqueous cores into the aqueous continuous phase was monitored by visible absorption spectroscopy. These studies indicate immediate loss of 12-18% dye during the high speed homogenization that is required for double emulsion formation, but no further dye release is observed at 20 °C for at least 15 days thereafter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app