Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm.

OBJECTIVE: Abdominal aortic aneurysm (AAA) is considered a chronic inflammatory disease; however, the molecular basis underlying the sterile inflammatory response involved in the process of AAA remains unclear. We previously showed that the inflammasome, which regulates the caspase-1-dependent interleukin-1β production, mediates the sterile cardiovascular inflammatory responses. Therefore, we hypothesized that the inflammasome is a key mediator of initial inflammation in AAA formation.

APPROACH AND RESULTS: Apoptosis-associated speck-like protein containing a caspase recruitment domain is highly expressed in adventitial macrophages in human and murine AAA tissues. Using an established mouse model of AAA induced by continuous infusion of angiotensin II in Apoe(-/-) mice, NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 deficiency in Apoe(-/-) mice were shown to decrease the incidence, maximal diameter, and severity of AAA along with adventitial fibrosis and inflammatory responses significantly, such as inflammatory cell infiltration and cytokine expression in the vessel wall. NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 deficiency in Apoe(-/-) mice also reduced elastic lamina degradation and metalloproteinase activation in the early phase of AAA formation. Furthermore, angiotensin II stimulated generation of mitochondria-derived reactive oxygen species in the adventitial macrophages, and this mitochondria-derived reactive oxygen species generation was inhibited by NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1 deficiency. In vitro experiments revealed that angiotensin II stimulated the NLRP3 inflammasome activation and subsequent interleukin-1β release in macrophages, and this activation was mediated through an angiotensin type I receptor/mitochondria-derived reactive oxygen species-dependent pathway.

CONCLUSIONS: Our results demonstrate the importance of the NLRP3 inflammasome in the initial inflammatory responses in AAA formation, indicating its potential as a novel therapeutic target for preventing AAA progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app