Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths.

Herbivore-induced plant volatiles have been reported to play a role in the host-searching behavior of herbivores. However, next to nothing is known about the effect of volatiles emitted from tea plants infested by Ectropis obliqua larvae on the behavior of conspecific adults. Here, we found that tea plants infested by E. obliqua caterpillars for 24 h were more attractive to both virgin male and female E. obliqua adults than were intact, uninfested tea plants; moreover, mated female E. obliqua moths were more attracted by infested tea plants and preferentially oviposited on these plants, whereas male moths were repelled by infested plants once they had mated. Volatile analysis revealed that the herbivore infestation dramatically increased the emission of volatiles. Among these volatiles, 17 compounds elicited antennal responses from both male and female virginal moths. Using a Y-tube olfactometer, we found that 3 of the 17 chemicals, benzyl alcohol, (Z)-3-hexenyl hexanoate, and (Z)-3-hexenal, were attractive, but two compounds, linalool and benzyl nitril, were repellent to virgin male and female moths. One chemical, (Z)-3-hexenyl acetate, was attractive only to virgin males. Mated females were attracted by three compounds, (Z)-3-hexenyl hexanoate, (Z)-3-hexenyl acetate, and (Z)-3-hexenal; whereas mated males were repelled by (Z)-3-hexenol. The findings provide new insights into the interaction between tea plants and the herbivores, and may help scientists develop new measures with which to control E. obliqua.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app