JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Piceatannol inhibits phorbol ester-induced expression of COX-2 and iNOS in HR-1 hairless mouse skin by blocking the activation of NF-κB and AP-1.

OBJECTIVES: The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory activity of piceatannol (trans-3,4,3',5'-tetrahydroxystilbene) in mouse skin in vivo.

METHODS: Female HR-1 hairless mice were topically treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) with or without piceatannol pretreatment. Epidermal protein expression was assessed by Western blot analysis. The cyclooxygenase-2 (COX-2) expression was detected by immunohistochemistry. The DNA binding of nuclear factor-kappaB (NF-κB) and activator protein-1 (AP-1) was examined by the electrophoretic mobility gel shift assay. The catalytic activity of IκBα kinase-β (IKKβ) was measured by in vitro kinase assay.

RESULTS: Pretreatment with piceatannol attenuated TPA-induced expression of COX-2 and inducible nitric oxide synthase (iNOS) in mouse skin. Piceatannol diminished nuclear translocation and the DNA binding of NF-κB through the blockade of phosphorylation and subsequent degradation of IκBα. Piceatannol attenuated the catalytic activity of IKKβ and inhibited the phosphorylation of mitogen-activated protein (MAP) kinases in TPA-treated mouse skin. In addition, piceatannol decreased TPA-induced expression of c-Fos and the DNA binding of AP-1.

CONCLUSION: Piceatannol inhibits TPA-induced COX-2 and iNOS expression by blocking the activation of NF-κB and AP-1 via suppression of the IKKβ activity and phosphorylation of MAP kinases, which provides a mechanistic basis of its anti-inflammatory effects in mouse skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app