JOURNAL ARTICLE

Autologous platelet‑rich plasma promotes proliferation and chondrogenic differentiation of adipose‑derived stem cells

Ji Shen, Qingfeng Gao, Yao Zhang, Yaohua He
Molecular Medicine Reports 2015, 11 (2): 1298-303
25373459
Cartilage regeneration is a promising potential therapy for articular cartilage defects and adult stem cells serve a key role in regenerative medicine. Adipose‑derived stem cells (ADSCs) have been identified as an alternative source of adult stem cells in recent years and can be differentiated into numerous types of cell, including chondrocytes, adipocytes and osteoblasts. However, their clinical use is restricted by the proliferation of cells, and their tendency to dedifferentiate. Platelet‑rich plasma (PRP) has recently emerged as a potential bioactive material to promote cell proliferation and differentiation, based on the release of growth factors. In the current study, the effect of autologous PRP on the proliferation and chondrogenic differentiation of ADSCs was examined. The results indicated that PRP promotes ADSC proliferation and suggested that PRP leads to chondrogenic differentiation of ADSCs in vitro. When co‑cultured with chondrocytes, the ADSCs on three‑dimensional PRP scaffolds were able to form neocartilage, with positive staining of safranine O, which indicated the production of glycosaminoglycan, and type II collagen.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25373459
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"