Add like
Add dislike
Add to saved papers

Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides.

Angewandte Chemie 2015 January 3
Highly active bifunctional diporphyrin and triporphyrin catalysts were synthesized through Stille coupling reactions. As compared with a porphyrin monomer, both exhibited improved catalytic activities for the reaction of CO2 with epoxides to form cyclic carbonates, because of the multiple catalytic sites which cooperatively activate the epoxide. Catalytic activities were carefully investigated by controlling temperature, reaction time, and catalyst loading, and very high turnover number and turnover frequency were obtained: 220 000 and 46 000 h(-1) , respectively, for the magnesium catalyst, and 310 000 and 40 000 h(-1) , respectively, for the zinc catalyst. Results obtained with a zinc/free-base hybrid diporphyrin catalyst demonstrated that the Br(-) ions on the adjacent porphyrin moiety also function as nucleophiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app