JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcriptional targeting of human liver carboxylesterase (hCE1m6) and simultaneous expression of anti-BCRP shRNA enhances sensitivity of breast cancer cells to CPT-11.

Anticancer Research 2014 November
BACKGROUND: The major factor limiting the efficacy of breast cancer chemotherapy is multidrug resistance due to overexpression of the breast cancer resistance protein ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2). We hypothesized that conversion of camptothecin-11 (CPT-11) to its highly cytotoxic metabolite SN-38 by a mutant human carboxyl esterase (hCE1m6) specifically in cancer cells and inhibition of ABCG2 by anti-ABCG2 short hairpin RNA, leads to accumulation of a higher concentration of SN-38, resulting in higher therapeutic efficacy and less toxicity to normal cells.

MATERIALS AND METHODS: A mutant human carboxyl esterase hCE1m6 with human telomerase reverse transcriptase promoter was integrated into the VISA (VP16-Gal4-WPRE) amplification system. The plasmid was transfected into MCF-12A, MDA-MB-231, and MCF-7 cells using JetPRIME®. Cancer-specific expression of hCE1m6 in breast cancer cell lines was tested by real-time polymerase chain reaction (real time-PCR) and western blot. In vitro conversion of CPT-11 to SN-38 was evaluated on lysates of transfected cells. Cytotoxicity of CPT-11 against cells transfected with the plasmid was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

RESULTS: Real-time PCR and western blot analysis revealed that hCE1m6 was expressed only in breast cancer cells, MCF-7 and MDA-MB-231, but not in the normal MCF-12A breast cell line. From the CPT-11 conversion assay on cell lysates, it was found that expressed hCE1m6 in cancer cells was able to effectively convert CPT-11 to SN-38.

CONCLUSION: Breast cancer cell lines transfected with hCE1m6 showed an increased susceptibility to CPT-11 in comparison to MCF-12A cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app