JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

miR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer.

Oncogene 2015 July 31
Although surgery remains the mainstay of curative treatment for colorectal cancer (CRC), many patients still have high chance to experience disease relapse. It is therefore imperative to identify prognostic markers that can help predict the clinical outcomes of CRC. Aberrant microRNA expression holds great potential as diagnostic and prognostic biomarker for CRC. Here we aimed to investigate clinical potential of miR-34a-5p as a prognostic marker for CRC recurrence and its functional significance. First, we validated that miR-34a-5p was downregulated in CRC tumour tissues (P<0.05). The expression level of tissue miR-34a-5p was then evaluated in two independent cohorts of 268 CRC patients. miR-34a-5p expression was positively correlated with disease-free survival in two independent cohorts (cohort I: n=205, P<0.001; cohort II: n=63, P=0.006). Moreover, the expression of miR-34a-5p was an independent prognostic factor for CRC recurrence by multivariate analysis (P<0.001 for cohort I, P=0.007 for cohort II). Ectopic expression of miR-34a-5p in p53 wild-type colon cancer cell HCT116 significantly inhibited cell growth, migration, invasion and metastasis. miR-34a-5p induced cell apoptosis, cell cycle arrest at G1 phase and p53 transcription activity in HCT116 cells, but not in the HCT116 p53 knockout (p53(-/-)) cells. miR-34a-5p significantly suppressed the HCT116 growth in vivo, whereas it showed no effect on the HCT116 p53(-/-) xenograft, indicating that the growth-inhibiting effect by miR-34a-5p was dependent on p53. In addition, the expression level of miR-34a-5p in patients with p53-positive expression was higher than that in patients with p53-negative expression (P<0.01). In conclusion, miR-34a-5p inhibits recurrence of CRC through inhibiting cell growth, migration and invasion, inducing cell apoptosis and cell cycle arrest in a p53-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app