Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration.

Bone marrow concentration (BMC) is the most recognized procedure to prepare mesenchymal stem cells for cartilage regeneration. However, bone marrow aspiration is highly invasive and results in low stem cell numbers. Recently, adipose tissue-derived stromal vascular fraction (AT-SVF) was studied as an alternate source of stem cells for cartilage regeneration. However, AT-SVF is not fully characterized in terms of functional equivalence to BMC. Therefore, in this study, we characterized AT-SVF and assessed its suitability as a one-step surgical procedure for cartilage regeneration, as an alternative to BMC. AT-SVF contained approximately sixfold less nucleated cells than BMC. However, adherent cells in AT-SVF were fourfold greater than BMC. Additionally, the colony-forming unit frequency of AT-SVF was higher than that of BMC, at 0.5 and 0.01%, respectively. The mesenchymal stem cell (MSC) population (CD45-CD31-CD90+CD105+) was 4.28% in AT-SVF and 0.42% in BMC, and the adipose-derived stromal cell (ASC) population (CD34+CD31-CD146-) was 32% in AT-SVF and 0.16% in BMC. In vitro chondrogenesis demonstrated that micromass was not formed in BMC, whereas it was clearly formed in AT-SVF. Taken together, uncultured AT-SVF could be used in one-step surgery for cartilage regeneration as a substitute for BMC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app