Sclerostin inhibition prevents spinal cord injury-induced cancellous bone loss

Luke A Beggs, Fan Ye, Payal Ghosh, Darren T Beck, Christine F Conover, Alexander Balaez, Julie R Miller, Ean G Phillips, Nigel Zheng, Alyssa A Williams, J Ignacio Aguirre, Thomas J Wronski, Prodip K Bose, Stephen E Borst, Joshua F Yarrow
Journal of Bone and Mineral Research 2015, 30 (4): 681-9
Spinal cord injury (SCI) results in rapid and extensive sublesional bone loss. Sclerostin, an osteocyte-derived glycoprotein that negatively regulates intraskeletal Wnt signaling, is elevated after SCI and may represent a mechanism underlying this excessive bone loss. However, it remains unknown whether pharmacologic sclerostin inhibition ameliorates bone loss subsequent to SCI. Our primary purposes were to determine whether a sclerostin antibody (Scl-Ab) prevents hindlimb cancellous bone loss in a rodent SCI model and to compare the effects of a Scl-Ab to that of testosterone-enanthate (TE), an agent that we have previously shown prevents SCI-induced bone loss. Fifty-five (n = 11-19/group) skeletally mature male Sprague-Dawley rats were randomized to receive: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe (250 kilodyne) SCI, (C) 250 kilodyne SCI + TE (7.0 mg/wk, im), or (D) 250 kilodyne SCI + Scl-Ab (25 mg/kg, twice weekly, sc) for 3 weeks. Twenty-one days post-injury, SCI animals exhibited reduced hindlimb cancellous bone volume at the proximal tibia (via μCT and histomorphometry) and distal femur (via μCT), characterized by reduced trabecular number and thickness. SCI also reduced trabecular connectivity and platelike trabecular structures, indicating diminished structural integrity of the remaining cancellous network, and produced deficits in cortical bone (femoral diaphysis) strength. Scl-Ab and TE both prevented SCI-induced cancellous bone loss, albeit via differing mechanisms. Specifically, Scl-Ab increased osteoblast surface and bone formation, indicating direct bone anabolic effects, whereas TE reduced osteoclast surface with minimal effect on bone formation, indicating antiresorptive effects. The deleterious microarchitectural alterations in the trabecular network were also prevented in SCI + Scl-Ab and SCI + TE animals, whereas only Scl-Ab completely prevented the reduction in cortical bone strength. Our findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI-induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl-Ab prevents osteoporosis in the SCI population.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"