Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genome sequencing identifies a novel mutation in ATP1A3 in a family with dystonia in females only.

Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal movements or postures. Several genetic causes of dystonia have been elucidated but genetic causes of dystonia specifically affecting females have not yet been described. In the present study, we investigated a large dystonia family from New Zealand in which only females were affected. They presented with a generalized form of the disorder including laryngeal, cervical, and arm dystonia. We found a novel, likely disease-causing, three base-pair deletion (c.443_445delGAG, p.Ser148del) in ATP1A3 in this family by combining genome and exome sequencing. Mutations in ATP1A3 have previously been linked to rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and CAPOS syndrome. Therefore, we re-examined our patients with a specific focus on typical symptoms of these conditions. It turned out that all patients reported a rapid onset of dystonic symptoms following a trigger suggesting a diagnosis of RDP. Notably, none of the patients showed clear symptoms of parkinsonism or symptoms specific for AHC or CAPOS. The ATP1A3 gene is located on chromosome 19q13.2, thus, providing no obvious explanation for the preponderance to affect females. Interestingly, we also identified one unaffected male offspring carrying the p.Ser148del mutation suggesting reduced penetrance of this mutation, a phenomenon that has also been observed for other RDP-causing mutations in ATP1A3. Although phenotypic information in this family was initially incomplete, the identification of the p.Ser148del ATP1A3 mutation elicited clinical re-examination of patients subsequently allowing establishing the correct diagnosis, a phenomenon known as "reverse phenotyping".

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app