COMPARATIVE STUDY
JOURNAL ARTICLE

Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking

R Suresh, S Bhalla, C Singh, N Kaur, J Hao, S Anand
Technology and Health Care: Official Journal of the European Society for Engineering and Medicine 2015, 23 (1): 47-61
25351277

BACKGROUND: Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation.

OBJECTIVE: The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds.

METHODS: For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d<formula>_{33}</formula> (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types.

RESULTS: The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking speed varied from 1 kilometer per hour (kmph) to 7 kmph.

CONCLUSIONS: When instrumented in combination, the two sensors can enable measurements ranging from static to high speed conditions Both the sensor types are rugged, small sized and can be easily embedded in commercial shoes and enable plantar pressure measurement in a cost-effective manner. This research is expected to have application in the treatment of patients suffering from diabetes and gonarthrosis.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25351277
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"