CO₂ electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au(111)

Aneta Januszewska, Rafal Jurczakowski, Pawel J Kulesza
Langmuir: the ACS Journal of Surfaces and Colloids 2014 December 2, 30 (47): 14314-21
We report here the results of electrochemical studies on CO2 electroreduction at multilayered catalyst composed of the monatomic layer of copper covering palladium overlayers (0.8-10 monolayers) deposited on the well-defined Au(111) surface. These multilayered systems were obtained by successive underpotential deposition steps: Pd on Au(111) as well as Cu on Pd/Au(111). Low index orientation of Au substrate was chosen to compare Pd overlayers with bulk Pd(111), which is known to reduce CO2 to CO adsorbates in acidic solutions. The process of CO2 electroreduction was studied by using classical transient electrochemical methods. Catalytic activity of bare Pd layers was investigated in acidic and neutral solutions. In the latter case, much higher activity of Pd overlayers was observed. The results showed that the palladium layer thickness significantly changed the catalytic activities of both bare Pd overlayers and the one Cu monolayer covered electrodes toward CO2 electroreduction. Results show that catalytic activity can be finely tuned by using the multilayered near-surface-alloy approach.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"