JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Androgen deprivation therapy sensitizes prostate cancer cells to T-cell killing through androgen receptor dependent modulation of the apoptotic pathway.

Oncotarget 2014 October 16
Despite recent advances in diagnosis and management, prostrate cancer remains the second most common cause of death from cancer in American men, after lung cancer. Failure of chemotherapies and hormone-deprivation therapies is the major cause of death in patients with castration-resistant prostate cancer (CRPC). Currently, the androgen inhibitors enzalutamide and abiraterone are approved for treatment of metastatic CRPC. Here we show for the first time that both enzalutamide and abiraterone render prostate tumor cells more sensitive to T cell-mediated lysis through immunogenic modulation, and that these immunomodulatory activities are androgen receptor (AR)-dependent. In studies reported here, the NAIP gene was significantly down-regulated in human prostate tumor cells treated in vitro and in vivo with enzalutamide. Functional analysis revealed that NAIP played a critical role in inducing CTL sensitivity. Amplification of AR is a major mechanism of resistance to androgen-deprivation therapy (ADT). Here, we show that enzalutamide enhances sensitivity to immune-mediated killing of prostate tumor cells that overexpress AR. The immunomodulatory properties of enzalutamide and abiraterone provide a rationale for their use in combination with immunotherapeutic agents in CRPC, especially for patients with minimal response to enzalutamide or abiraterone alone, or for patients who have developed resistance to ADT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app