JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells.

In multiple myeloma (MM), bone marrow mesenchymal stromal cells (BM-MSCs) play an important role in pathogenesis and disease progression by supporting myeloma cell growth and immune escape. Previous studies have suggested that direct and indirect interactions between malignant cells and BM-MSCs result in constitutive abnormal immunomodulatory capacities in MM BM-MSCs. The aim of this study was to investigate the mechanisms that underlie these MM BM-MSCs abnormalities. We demonstrated that MM BM-MSCs exhibit abnormal expression of CD40/40L, VCAM1, ICAM-1, LFA-3, HO-1, HLA-DR and HLA-ABC. Furthermore, an overproduction of IL-6 (1,806 ± 152.5 vs 719.6 ± 18.22 ng/mL; p = 0.035) and a reduced secretion of IL-10 (136 ± 15.02 vs 346.4 ± 35.32 ng/mL; p = 0.015) were quantified in culture medium when MM BM-MSCs were co-cultured with T lymphocytes compared to co-cultures with healthy donor (HD) BM-MSCs. An increased Th17/Treg ratio was observed when T cells were co-cultured with MM BM-MSCs compared to co-cultures with HD BM-MSCs (0.955 vs 0.055). Together, these observations demonstrated that altered immunomodulation capacities of MM BM-MSCs were linked to variations in their immunogenicity and secretion profile. These alterations lead not only to a reduced inhibition of T cell proliferation but also to a shift in the Th17/Treg balance. We identified factors that are potentially responsible for these alterations, such as IL-6, VCAM-1 and CD40, which could also be associated with MM pathogenesis and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app