MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: validation on healthy subjects with stereophotogrammetric system

Francesca Buganè, Maria Grazia Benedetti, Valentina D'Angeli, Alberto Leardini
Biomedical Engineering Online 2014, 13: 146
25336170

BACKGROUND: Kinematics measures from inertial sensors have a value in the clinical assessment of pathological gait, to track quantitatively the outcome of interventions and rehabilitation programs. To become a standard tool for clinicians, it is necessary to evaluate their capability to provide reliable and comprehensible information, possibly by comparing this with that provided by the traditional gait analysis. The aim of this study was to assess by state-of-the-art gait analysis the reliability of a single inertial device attached to the sacrum to measure pelvis kinematics during level walking.

METHODS: The output signals of the three-axis gyroscope were processed to estimate the spatial orientation of the pelvis in the sagittal (tilt angle), frontal (obliquity) and transverse (rotation) anatomical planes These estimated angles were compared with those provided by a 8 TV-cameras stereophotogrammetric system utilizing a standard experimental protocol, with four markers on the pelvis. This was observed in a group of sixteen healthy subjects while performing three repetitions of level walking along a 10 meter walkway at slow, normal and fast speeds. The determination coefficient, the scale factor and the bias of a linear regression model were calculated to represent the differences between the angular patterns from the two measurement systems. For the intra-subject variability, one volunteer was asked to repeat walking at normal speed 10 times.

RESULTS: A good match was observed for obliquity and rotation angles. For the tilt angle, the pattern and range of motion was similar, but a bias was observed, due to the different initial inclination angle in the sagittal plane of the inertial sensor with respect to the pelvis anatomical frame. A good intra-subject consistency has also been shown by the small variability of the pelvic angles as estimated by the new system, confirmed by very small values of standard deviation for all three angles.

CONCLUSIONS: These results suggest that this inertial device is a reliable alternative to stereophotogrammetric systems for pelvis kinematics measurements, in addition to being easier to use and cheaper. The device can provide to the patient and to the examiner reliable feedback in real-time during routine clinical tests.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
25336170
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"