JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Serum 25-hydroxyvitamin D, mortality, and incident cardiovascular disease, respiratory disease, cancers, and fractures: a 13-y prospective population study.

BACKGROUND: Vitamin D is associated with many health conditions, but optimal blood concentrations are still uncertain.

OBJECTIVES: We examined the prospective relation between serum 25-hydroxyvitamin D [25(OH)D] concentrations [which comprised 25(OH)D3 and 25(OH)D2] and subsequent mortality by the cause and incident diseases in a prospective population study.

DESIGN: Serum vitamin D concentrations were measured in 14,641 men and women aged 42-82 y in 1997-2000 who were living in Norfolk, United Kingdom, and were followed up to 2012. Participants were categorized into 5 groups according to baseline serum concentrations of total 25(OH)D <30, 30 to <50, 50 to <70, 70 to <90, and ≥ 90 nmol/L.

RESULTS: The mean serum total 25(OH)D was 56.6 nmol/L, which consisted predominantly of 25(OH)D3 (mean: 56.2 nmol/L; 99% of total). The age-, sex-, and month-adjusted HRs (95% CIs) for all-cause mortality (2776 deaths) for men and women by increasing vitamin D category were 1, 0.84 (0.74, 0.94), 0.72 (0.63, 0.81), 0.71 (0.62, 0.82), and 0.66 (0.55, 0.79) (P-trend < 0.0001). When analyzed as a continuous variable and with additional adjustment for body mass index, smoking, social class, education, physical activity, alcohol intake, plasma vitamin C, history of cardiovascular disease, diabetes, or cancer, HRs for a 20-nmol/L increase in 25(OH)D were 0.92 (0.88, 0.96) (P < 0.001) for total mortality, 0.96 (0.93, 0.99) (P = 0.014) (4469 events) for cardiovascular disease, 0.89 (0.85, 0.93) (P < 0.0001) (2132 events) for respiratory disease, 0.89 (0.81, 0.98) (P = 0.012) (563 events) for fractures, and 1.02 (0.99, 1.06) (P = 0.21) (3121 events) for incident total cancers.

CONCLUSIONS: Plasma 25(OH)D concentrations predict subsequent lower 13-y total mortality and incident cardiovascular disease, respiratory disease, and fractures but not total incident cancers. For mortality, lowest risks were in subjects with concentrations >90 nmol/L, and there was no evidence of increased mortality at high concentrations, suggesting that a moderate increase in population mean concentrations may have potential health benefit, but <1% of the population had concentrations >120 nmol/L.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app