Add like
Add dislike
Add to saved papers

Locally Adaptive Bayes Nonparametric Regression via Nested Gaussian Processes.

We propose a nested Gaussian process (nGP) as a locally adaptive prior for Bayesian nonparametric regression. Specified through a set of stochastic differential equations (SDEs), the nGP imposes a Gaussian process prior for the function's mth-order derivative. The nesting comes in through including a local instantaneous mean function, which is drawn from another Gaussian process inducing adaptivity to locally-varying smoothness. We discuss the support of the nGP prior in terms of the closure of a reproducing kernel Hilbert space, and consider theoretical properties of the posterior. The posterior mean under the nGP prior is shown to be equivalent to the minimizer of a nested penalized sum-of-squares involving penalties for both the global and local roughness of the function. Using highly-efficient Markov chain Monte Carlo for posterior inference, the proposed method performs well in simulation studies compared to several alternatives, and is scalable to massive data, illustrated through a proteomics application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app