JOURNAL ARTICLE

A monoclonal antibody against 47.2 kDa cell surface antigen prevents adherence and affects biofilm formation of Candida albicans

Nripendra Nath Mishra, Shakir Ali, Praveen K Shukla
World Journal of Microbiology & Biotechnology 2015, 31 (1): 11-21
25325986
Candida albicans is an opportunistic dimorphic pathogen that exists in both planktonic and biofilm phases causing deep-rooted infections in mainly immunocompromised patients. Antibodies are believed to play anti-Candida activity by different mechanisms, like inhibition of adhesion and neutralization of virulence-related antigens. Inhibition of adhesion is one of the important strategies to prevent Candida infections and biofilm formation. In this study, monoclonal antibody (MAb 7D7) against C. albicans biofilm cell surface antigen (47.2 kDa) was generated to determine the changes in adherence and viability of C. albicans. In this regard XTT assay was carried out in 30, 60, 90 min and 48 h (maturation time) time points using MAb 7D7 and it (MAb 7D7) was found to be effective against adhesion and the formation of C. albicans biofilm on polystyrene as well as monolayer of human epithelial cells (HeLa). This result may also prove to be a valuable addition to the reagents available to study C. albicans cell surface dynamics and interaction of the fungus with host cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25325986
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"