Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols.

This paper describes an eco-friendly, one-pot strategy for the synthesis of water-soluble, high-quantum-yield gold nanoclusters (AuNCs) stabilized with 11-mercaptoundecanoic acid (MUA) on their surfaces. The as-prepared ultrasmall MUA-AuNCs (1.9 nm) exhibited a quantum yield (QY) of 13%, higher than those of most previously described thiol-protected AuNCs. We applied these MUA-AuNCs as a versatile probe to develop a fluorescence "turn-off" assay for sensing Hg(2+) ions as well as a fluorescence "turn-on" assay for sensing biothiols. The former assay operated through aggregation-induced fluorescence quenching upon interaction of the MUA-AuNCs with Hg(2+) ions in a buffer containing 2,6-pyridinedicarboxylic acid (PDCA); this probe provided high sensitivity and remarkable selectivity over other selected metal ions with a limit of detection (LOD) for Hg(2+) ions of 450 pM and linearity from 2 to 50 nM. In the latter assay for biothiols [i.e., cysteine (Cys), homocysteine (Hcy), glutathione (GSH)], the fluorescence of the Hg(2+)-MUA-AuNCs complexes was turned on because the affinity of Hg(2+) ions toward the SH group of the biothiols was greater than that toward the COOH groups of the MUA units on the surface of the AuNCs. This assay provided good linearity for the tested biothiols, ranging from 10 to 100 nM for Cys, from 10 to 100 nM for Hcy, and from 5 to 75 nM for GSH, with LODs of 5.4, 4.2, and 2.1 nM, respectively. In addition, these environmentally and biologically friendly AuNC probes tested satisfactorily against interference from a range of amino acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app