JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dietary vitamin D during pregnancy has dose-dependent effects on long bone density and architecture in guinea pig offspring but not the sows.

Journal of Nutrition 2014 December
BACKGROUND: The effects of vitamin D during pregnancy on maternal and neonatal bone health remain unclear.

OBJECTIVE: This study was designed to test whether dietary vitamin D dose-dependently affects maternal and neonatal bone health.

METHODS: Female guinea pigs (n = 45; 4 mo old) were randomly assigned at mating to receive 1 of 5 doses of vitamin D3 (cholecalciferol; 0, 0.25, 0.5, 1, or 2 IU/g diet) throughout pregnancy. Plasma vitamin D metabolites, mineral homeostasis, bone biomarkers, and bone mass were tested in sows throughout pregnancy and in 2-d-old pups. Microarchitecture and histology of excised bone were conducted postpartum.

RESULTS: By 3 wk of pregnancy, plasma 25-hydroxyvitamin D [25(OH)D] followed a positive dose-response, whereas 1,25-dihydroxyvitamin D [1,25(OH)2D] reached a plateau if vitamin D was ≥0.5 IU/g diet. Weight gain, areal bone mineral density (aBMD), volumetic bone mineral density (vBMD), and bone biomarkers did not differ among maternal groups. A positive dose-response was observed for mean ± SEM pup plasma concentrations of 25(OH)D (10.5 ± 1.50 to 113 ±11.6 nmol/L) and 1,25(OH)2D (123 ± 13.8 to 544 ± 53.3 pmol/L). Pup weight, plasma minerals, and osteocalcin were not different; plasma deoxypyridinoline was lower in the 1- and 0.25-IU/g groups than in all other groups. Pup femur aBMD was higher (9.2-13%; P = 0.04) in the 2-IU/g group than in all other groups except for the 0-IU/g group. Tibia and femur vBMD of pups responded to maternal diet in a U-shaped pattern. The femoral growth plate was 7.9% wider in the 0-IU/g group than in the 1-IU/g group.

CONCLUSIONS: Maternal vitamin D supplementation dose-dependently altered pup long bone architecture and mineral density in a manner similar to vitamin D deficient rickets whereas maternal bone was stable. These data reinforce that inadequate maternal vitamin D intake may compromise neonatal bone health and that exceeding recommendations is not advantageous.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app