JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of TG-interacting factor in microglial activation during experimental traumatic brain injury.

Traumatic brain injury (TBI) is a complex injury involving several physiological alterations, potentially leading to neurological impairment. Previous mouse studies using high-density oligonucleotide array analysis have confirmed the upregulation of transforming growth-interacting factor (TGIF) mRNA in TBI. TGIF is a transcriptional corepressor of transforming growth factor beta (TGF-β) signaling which plays a protective role in TBI. However, the functional roles of TGIF in TBI are not well understood. In this study, we used confocal microscopy after immunofluorescence staining to demonstrate the increase of TGIF levels in the activated microglia of the pericontusional cortex of rats with TBI. Intracerebral knockdown of TGIF in the pericontusional cortex significantly downregulated TGIF expression, attenuated microglial activation, reduced the volume of damaged brain tissue, and facilitated recovery of limb motor function. Collectively, our results indicate that TGIF is involved in TBI-induced microglial activation, resulting in secondary brain injury and motor dysfunction. This study investigated the roles of transforming growth-interacting factor (TGIF) in a traumatic brain injury (TBI)-rat model. We demonstrated the increase of TGIF levels in the activated microglia of the pericontusional cortex of rats with TBI. Intracerebral knockdown of TGIF in the pericontusional cortex of the TBI rats significantly attenuated micoglial activation, reduced the volume of damaged brain tissue, and facilitated recovery of limb motor function. We suggest that inhibition of TGIF might provide a promising therapeutic strategy for TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app