Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Alteration of epithelial-mesenchymal transition markers in human normal ovaries and neoplastic ovarian cancers.

Most ovarian cancers originate in the ovarian surface epithelium (OSE). Ovarian cancers might undergo epithelial-mesenchymal transition (EMT) in response to various mediators or regulators such as EMT-inducing factors. In this study, ovarian tumor specimens from patients were analyzed to demonstrate alteration of EMT-related markers according to benign and malignant types of ovarian cancers. In the three ovarian cancer cell lines, OVCAR-3, SKOV-3, and BG-1, the expression of epithelial (E-cadherin) and mesenchymal (vimentin) cell markers was identified by RNA and protein analysis. OVCAR-3 and BG-1 cells strongly expressed E-cadherin as well as morphological features such as epithelial cells, but vimentin was not observed. In contrast to these cancer cells, SKOV-3 showed a phenotype typical of mesenchymal cells. Alteration of EMT markers and EMT-related transcriptional factors were confirmed in clinical ovarian tissue samples obtained from 74 patients. E-cadherin was expressed in 57.1% of benign tumors, while vimentin was expressed in 83.3% of normal ovaries by immunohistochemistry (IHC) analysis of E-cadherin and vimentin revealed the phenomenon in the tissue specimens. Evaluation of the EMT-associated transcriptional factors Snail, Slug, and Twist revealed that Snail was overexpressed by 7.1-fold in malignant ovarian cancer compared to normal ovaries or benign tumors. Although expression levels of other factors were higher in benign and malignant ovarian tumors, they were not closely correlated with the aforementioned ovarian cancer types. Overall, Snail may affect the EMT process in ovarian cancer development and upregulation of Snail expression followed by the downregulation of E-cadherin enhances the invasiveness of ovarian cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app