JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparative profiling of membrane lipids during water stress in Thellungiella salsuginea and its relative Arabidopsis thaliana.

Phytochemistry 2014 December
The remodelling of membrane lipids contributes to the tolerance of plants to stresses, such as freezing and deprivation of phosphorus. However, whether and how this remodelling relates to tolerance of PEG-induced osmotic stress has seldom been reported. Thellungiella salsuginea is a popular extremophile model for studies of stress tolerance. In this study, it was demonstrated that T. salsuginea was more tolerant to PEG-induced osmotic stress than its close relative Arabidopsis thaliana. Lipidomic analysis indicated that plastidic lipids are more sensitive to PEG-induced osmotic stress than extra-plastidic ones in both species, and that the changes in plastidic lipids differed markedly between them. PEG-induced osmotic stress led to a dramatic decrease in levels of plastidic lipids in A. thaliana, whereas the change in plastidic lipid in T. salsuginea involved an adaptive remodelling shortly after the onset of PEG-induced osmotic stress. The two aspects of this remodelling involved increases in (1) the level of plastidic lipids, especially digalactosyl diacylglycerol, and (2) the double bond index of plastidic lipids. These remodelling steps could maintain the integrity and improve the fluidity of plastidic membranes and this may contribute to the PEG-induced osmotic stress tolerance of T. salsuginea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app