JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in the hemolymph protein profiles in Galleria mellonella infected with Bacillus thuringiensis involve apolipophorin III. The effect of heat shock.

This report concerns the effect of heat shock on host-pathogen interaction in Galleria mellonella infected with Bacillus thuringiensis. We show enhanced activity against Gram-positive bacteria in the hemolymph of larvae pre-exposed to heat shock before infection with B. thuringiensis. Heat shock influenced the protein pattern in the hemolymph of infected larvae: more peptides with a molecular weight below 10 kDa were detected in comparison with nonshocked animals. Additionally, we noticed that the amount of apolipophorin III (apoLp-III) in the hemolymph decreased transiently following infection, which was considerably higher in larvae pre-exposed to heat shock. On the other hand, its expression in the fat body showed a consequent infection-induced decline, observed equally in shocked and nonshocked animals. This suggests that the amount of apoLp-III in the hemolymph of G. mellonella larvae is regulated at multiple levels. We also report that this protein is more resistant to degradation in the hemolymph of larvae pre-exposed to heat shock in comparison to nonshocked larvae. Two-dimensional analysis revealed the presence of three isoforms of apoLp-III, all susceptible to proteolytic degradation. However, one of them was the most abundant, both in the protease-treated and untreated hemolymph. Taking into consideration that, in general, apoLp-III has a stimulative effect on different immune-related hemolymph proteins and peptides, the reported findings bring us closer to understanding the effect of heat shock on the resistance of G. mellonella to infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app