JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The longitudinal assessment of osteomyelitis development by molecular imaging in a rabbit model.

INTRODUCTION: Osteomyelitis is a severe orthopaedic complication which is difficult to diagnose and treat. Previous experimental studies mainly focussed on evaluating osteomyelitis in the presence of an implant or used a sclerosing agent to promote infection onset. In contrast, we focused on the longitudinal assessment of a nonimplant related osteomyelitis.

METHODS: An intramedullary tibial infection with S. aureus was established in NZW rabbits. Clinical and haematological infection status was evaluated weekly, combined with X-ray radiographs, biweekly injections of calcium binding fluorophores, and postmortem micro-CT. The development of the infection was assessed by micro-PET at consecutive time points using 18F-FDG as an infection tracer.

RESULTS: The intramedullary contamination of the rabbit tibia resulted in an osteomyelitis. Haematological parameters confirmed infection in mainly the first postoperative weeks (CRP at the first 5 postoperative weeks, leucocyte differentiation at the second and sixth postoperative weeks, and ESR on the second postoperative week only), while micro-PET was able to detect the infection from the first post-operative week onward until the end of the study.

CONCLUSIONS: This study shows that osteomyelitis in the rabbit can be induced without use of an implant or sclerosing agent. The sequential follow-up indicates that the diagnostic value of each infection parameter is time point dependant. Furthermore, from all parameters used, the diagnostic value of  18F-FDG micro-PET is the most versatile to assess the presence of an orthopaedic infection in this model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app