Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ordered hierarchically porous carbon codoped with iron and nitrogen as electrocatalyst for the oxygen reduction reaction.

ChemSusChem 2014 December
N-doped carbon catalysts have attracted great attention as potential alternatives to expensive Pt-based catalysts used in fuel cells. Herein, an ordered hierarchically porous carbon codoped with N and Fe (Fe-NOHPC) is prepared by an evaporation-induced self-assembly process followed by carbonization under ammonia. The soft template and Fe species promote the formation of the porous structure and facilitate the oxygen reduction reaction (ORR).The catalyst possesses an ordered hierarchically porous structure with a large surface area (1172.5 m(2) g(-1) ) and pore volume of 1.03 cm(3) g(-1) . Compared to commercial 20% Pt/C, it exhibits better ORR catalytic activity and higher stability as well as higher methanol tolerance in an alkaline electrolyte, which demonstrates its potential use in fuel cells as a nonprecious cathode catalyst. The N configuration, Fe species, and pore structure of the catalysts are believed to correlate with its high catalytic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app