JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Strong therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells.

The Notch signal regulates both cell viability and apoptosis, and maintains stemness of various cancers including glioblastoma (GBM). Although Notch signal inhibition may be an effective strategy in treating GBM initiating cells (GICs), its applicability to the different subtypes of GBM remains unclear. Here, we analyzed the effectiveness of MRK003, a preclinical γ-secretase inhibitor, on GICs. Nine patient-derived GICs were treated by MRK003, and its efficacy on cell viability, apoptosis, sphere forming ability and Akt expression level which might be related to Notch downstream and be greatly important signals in GBM was evaluated. MRK003 suppressed viability and sphere-formation ability, and induced apoptosis in all GICs in varying doses of MRK003. Based on their sensitivities to MRK003, the nine GICs were divided into "relatively sensitive" and "relatively resistant" GICs. Sensitivity to MRK003 was associated with its inhibitory effect on Akt pathway. Transgenic expression of the myristoylated Akt vector in relatively sensitive GICs partially rescued the effect of MRK003, suggesting that the effect of MRK003 was, at least in part, mediated through inhibition of the Akt pathway. These GICs were differentiated by the expression of CD44 and CD133 with flow cytometric analysis. The relatively sensitive GICs are CD44-high and CD133-low. The IC50 of MRK003 in a set of GICs exhibited a negative correlation with CD44 and positive correlation with CD133. Collectively, MRK003 is partially mediated by the Akt pathway and has strong therapeutic potential for CD44-high and CD133-low GICs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app