JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism.

Immunobiology 2015 Februrary
Dendritic cells (DCs) are specialized antigen-presenting cells with a bipolar nature. Depending on environmental factors, DCs will promote either inflammatory or anti-inflammatory effects. Lipopolysaccharide (LPS), a ligand of Toll-like receptor (TLR)4 and a most potent proinflammatory stimulus, is responsible for complex signaling events in different cell types, including DCs. LPS effects range from protective inflammation-capable of counteracting growth and dissemination of gram-negative bacteria - to hyperacute detrimental responses, as it occurs in endotoxic shock. Consistent with the plasticity of TLR4 signaling, a low dosage of LPS will induce a regulatory response capable of protecting mice against a subsequent, otherwise lethal challenge ('endotoxin tolerance'). By examining CD11c(+) DCs ('conventional' DCs, or cDCs), we investigated whether DC flexibility in promoting either inflammation or tolerance can be differentially affected by single vs. repeated exposure to LPS in vitro. cDCs stimulated twice with LPS expressed high levels of indoleamine 2,3-dioxygenase 1 (IDO1) - one of the most effective mediator of anti-inflammatory activity by DCs - and of TGF-β, an immunoregulatory cytokine capable of upregulating IDO1 expression and function. In contrast, a single exposure to LPS failed to upregulate IDO1, and it was instead associated with high-level production of IL-6, a cytokine that promotes inflammation and proteolysis of IDO1. When adoptively transferred in vivo, only cDCs on double endotoxin exposure greatly improved the outcome of an otherwise lethal LPS challenge. The protective effect required that the transferred cDCs be fully competent for IDO1 and the host for TGF-β production. Thus cDCs, conditioned by LPS in vitro to mimic an endotoxin-tolerant state, can protect recipients from endotoxic shock, pointing to adoptive transfer of tolerance as a new option for controlling potentially harmful responses to TLR4 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app