Add like
Add dislike
Add to saved papers

Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis.

Hydrogen sulfide (H(2)S), formed by multiple enzymes, including cystathionine-γ-lyase (CSE), targets Ca(v)3.2 T-type Ca(2+) channels (T channels) and transient receptor potential ankyrin-1 (TRPA1), facilitating somatic pain. Pancreatitis-related pain also appears to involve activation of T channels by H(2)S formed by the upregulated CSE. Therefore, this study investigates the roles of the Ca(v)3.2 isoform and/or TRPA1 in pancreatic nociception in the absence and presence of pancreatitis. In anesthetized mice, AP18, a TRPA1 inhibitor, abolished the Fos expression in the spinal dorsal horn caused by injection of a TRPA1 agonist into the pancreatic duct. As did mibefradil, a T-channel inhibitor, in our previous report, AP18 prevented the Fos expression following ductal NaHS, an H(2)S donor. In the mice with cerulein-induced acute pancreatitis, the referred hyperalgesia was suppressed by NNC 55-0396 (NNC), a selective T-channel inhibitor; zinc chloride; or ascorbic acid, known to inhibit Ca(v)3.2 selectively among three T-channel isoforms; and knockdown of Ca(v)3.2. In contrast, AP18 and knockdown of TRPA1 had no significant effect on the cerulein-induced referred hyperalgesia, although they significantly potentiated the antihyperalgesic effect of NNC at a subeffective dose. TRPA1 but not Ca(v)3.2 in the dorsal root ganglia was downregulated at a protein level in mice with cerulein-induced pancreatitis. The data indicate that TRPA1 and Ca(v)3.2 mediate the exogenous H(2)S-induced pancreatic nociception in naïve mice and suggest that, in the mice with pancreatitis, Ca(v)3.2 targeted by H(2)S primarily participates in the pancreatic pain, whereas TRPA1 is downregulated and plays a secondary role in pancreatic nociceptive signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app