Add like
Add dislike
Add to saved papers

Joint demosaicing and denoising via learned nonparametric random fields.

We introduce a machine learning approach to demosaicing, the reconstruction of color images from incomplete color filter array samples. There are two challenges to overcome by a demosaicing method: 1) it needs to model and respect the statistics of natural images in order to reconstruct natural looking images and 2) it should be able to perform well in the presence of noise. To facilitate an objective assessment of current methods, we introduce a public ground truth data set of natural images suitable for research in image demosaicing and denoising. We then use this large data set to develop a machine learning approach to demosaicing. Our proposed method addresses both demosaicing challenges by learning a statistical model of images and noise from hundreds of natural images. The resulting model performs simultaneous demosaicing and denoising. We show that the machine learning approach has a number of benefits: 1) the model is trained to directly optimize a user-specified performance measure such as peak signal-to-noise ratio (PSNR) or structural similarity; 2) we can handle novel color filter array layouts by retraining the model on such layouts; and 3) it outperforms the previous state-of-the-art, in some setups by 0.7-dB PSNR, faithfully reconstructing edges, textures, and smooth areas. Our results demonstrate that in demosaicing and related imaging applications, discriminatively trained machine learning models have the potential for peak performance at comparatively low engineering effort.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app