Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Controlled graft copolymerization of lactic acid onto starch in a supercritical carbon dioxide medium.

Carbohydrate Polymers 2014 December 20
This work presents a new approach for the synthesis of a starch-g-poly L-lactic acid (St-g-PLA) copolymer via the graft copolymerization of LA onto starch using stannous 2-ethyl hexanoate (Sn(Oct)2) as a catalyst in a supercritical carbon dioxide (scCO2) medium. The effects of several process parameters, including the pressure, temperature, scCO2 flow rate and reaction time, on the polymerization yield and grafting degree were studied. Amorphous graft St-g-PLA copolymers with increased thermal stability and processability were produced with a high efficiency. The maximum grafting degree (i.e., 52% PLA) was achieved with the following reaction conditions: 6h, 100°C, 200 bar and a 1:3 (w/w) ratio of St/LA. It was concluded that these low cost biobased graft biopolymers are potential candidates for several environment-friendly applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app