COMPARATIVE STUDY
JOURNAL ARTICLE

Cigarettes vs. e-cigarettes: Passive exposure at home measured by means of airborne marker and biomarkers

Montse Ballbè, Jose M Martínez-Sánchez, Xisca Sureda, Marcela Fu, Raúl Pérez-Ortuño, José A Pascual, Esteve Saltó, Esteve Fernández
Environmental Research 2014, 135: 76-80
25262078

BACKGROUND: There is scarce evidence about passive exposure to the vapour released or exhaled from electronic cigarettes (e-cigarettes) under real conditions. The aim of this study is to characterise passive exposure to nicotine from e-cigarettes' vapour and conventional cigarettes' smoke at home among non-smokers under real-use conditions.

METHODS: We conducted an observational study with 54 non-smoker volunteers from different homes: 25 living at home with conventional smokers, 5 living with nicotine e-cigarette users, and 24 from control homes (not using conventional cigarettes neither e-cigarettes). We measured airborne nicotine at home and biomarkers (cotinine in saliva and urine). We calculated geometric mean (GM) and geometric standard deviations (GSD). We also performed ANOVA and Student's t tests for the log-transformed data. We used Bonferroni-corrected t-tests to control the family error rate for multiple comparisons at 5%.

RESULTS: The GMs of airborne nicotine were 0.74 μg/m(3) (GSD=4.05) in the smokers' homes, 0.13 μg/m(3) (GSD=2.4) in the e-cigarettes users' homes, and 0.02 μg/m(3) (GSD=3.51) in the control homes. The GMs of salivary cotinine were 0.38 ng/ml (GSD=2.34) in the smokers' homes, 0.19 ng/ml (GSD=2.17) in the e-cigarettes users' homes, and 0.07 ng/ml (GSD=1.79) in the control homes. Salivary cotinine concentrations of the non-smokers exposed to e-cigarette's vapour at home (all exposed ≥ 2 h/day) were statistically significant different that those found in non-smokers exposed to second-hand smoke ≥ 2 h/day and in non-smokers from control homes.

CONCLUSIONS: The airborne markers were statistically higher in conventional cigarette homes than in e-cigarettes homes (5.7 times higher). However, concentrations of both biomarkers among non-smokers exposed to conventional cigarettes and e-cigarettes' vapour were statistically similar (only 2 and 1.4 times higher, respectively). The levels of airborne nicotine and cotinine concentrations in the homes with e-cigarette users were higher than control homes (differences statistically significant). Our results show that non-smokers passively exposed to e-cigarettes absorb nicotine.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25262078
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"