JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Basic fibroblast growth factor promotes stem Leydig cell development and inhibits LH-stimulated androgen production by regulating microRNA expression.

Leydig cells are the primary source of testosterone in the testes, and their steroidogenic function is strictly controlled by the hypothalamus-pituitary-gonad axis. Emerging evidence has indicated that fibroblast growth factors play a role in regulating stem Leydig cell development and steroidogenesis, but little is known about the regulatory mechanism. Using a seminiferous tubule culture system, we demonstrated that basic fibroblast growth factor (bFGF) can promote stem Leydig cell proliferation and commitment toward differentiation in testosterone-producing Leydig cells. However, these promoting effects decreased with an increase in the bFGF dose. Previous studies have reported that bFGF inhibits luteinizing hormone (LH)-stimulated androgen production by downregulating the mRNA expression of steroidogenic genes in immature Leydig cells. However, the expression levels of 677 microRNAs did not change significantly during the LH-mediated process of testosterone synthesis. Five microRNAs (miR-29a, -29c, -142-3p, -451 and -335) were identified, and their expression in immature Leydig cells was regulated simultaneously by bFGF and LH. These results suggested that the inhibition of LH-stimulated androgen production may be modulated by a change in bFGF-mediated microRNA expression, which further impacts the signaling pathway of testosterone biosynthesis and steroidogenic gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app