Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Inferences from genetically modified mouse models on the skeletal actions of vitamin D.

Vitamin D has pleiotropic extra-skeletal effects which have been noted in mouse models of deletion of either the 25-hydroxy vitamin D 1α-hydroxylase enzyme, cyp27b1 (1OHase(-/-) mice) or of the vitamin D receptor (Vdr(-/-) mice); these may be preventable or reversible by either restoring normal signaling of the 1,25(OH)2D/VDR system, or in some cases by restoring normal mineral homeostasis. However, effects on skeletal and mineral homeostasis are clearly the major phenotype observed in humans with loss-of-function mutations in either CYP27B1 or VDR. In mouse phenocopies of these human disorders, correction of hypocalcemia and hypophosphatemia reduce elevated circulating parathyroid hormone concentrations and normalize impaired bone mineralization, but restoration of normal 1,25(OH)2D/VDR signaling may be required for optimal bone formation. Induction of high endogenous 1,25(OH)2D concentrations in genetically modified mouse models may cause increased bone resorption and decreased mineralization. Transgenic Vdr overexpression and conditional Vdr deletion in cells of the osteoblastic lineage have also provided insights into the stages of osteoblast differentiation which may mediate these actions. These anabolic and catabolic effects of the 1,25(OH)2D system on bone may therefore be a function of both the ambient concentration of circulating 1,25(OH)2D and the stage of differentiation of the osteoblast. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app