Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology.

BACKGROUND: MicroRNAs (miRNAs) are an abundant class of small single-stranded non-coding RNA molecules ranging from 18 to 24 nucleotides. They negatively regulate gene expression at the post-transcriptional level and play key roles in many biological processes, including skeletal development and cartilage maturation. In addition, miRNAs involvement in osteoarticular diseases has been proved and some of them were identified as suitable biomarkers for pathological conditions. Equine osteochondrosis (OC) is one of the most prevalent juvenile osteoarticular disorders in horses and represents a major concern for animal welfare and economic reasons. Its etiology and pathology remain controversial and biological pathways as well as molecular mechanisms involved in the physiopathology are still unclear. This study aims to investigate the potential role of miRNAs in equine osteochondrosis (OC) physiopathology.Short-read NGS technology (SOLID™, Life Technologies) was used to establish a comprehensive repertoire of miRNA expressed in either equine cartilage or subchondral bone. Undamaged cartilage and subchondral bone samples from healthy (healthy samples) and OC-affected (predisposed samples) 10-month Anglo-Arabian foals were analysed. Samples were also subjected or not to an experimental mechanical loading to evaluate the role of miRNAs in the regulation of mechano-transduction pathways. Predicted targets of annotated miRNAs were identified using miRmap.

RESULTS: Epiphyseal cartilage and subchondral bone miRNome were defined, including about 300 new miRNAs. Differentially expressed miRNAs were identified between bone and cartilage from healthy and OC foals, as well as after an experimental mechanical loading. In cartilage, functional annotation of their predicted targets suggests a role in the maintenance of cartilage integrity through the control of cell cycle and differentiation, energy production and metabolism as well as extracellular matrix structure and dynamics. In bone, miRNA predicited targets were associated with osteoblasts and osteoclasts differentiation, though the regulation of energy production, vesicle transport and some growth factor signaling pathways.

CONCLUSION: Taken together, our results suggest a role of miRNAs in equine OC physiopathology and in the cellular response to biomechanical stress in cartilage and bone. In silico target prediction and functional enrichment analysis provides new insight into OC molecular physiopathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app