JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Abiotic degradation of glyphosate into aminomethylphosphonic acid in the presence of metals.

Glyphosate [N-phosphono-methylglycine (PMG)] is the most used herbicide worldwide, particularly since the development of transgenic glyphosate-resistant (GR) crops. Aminomethylphosphonic acid (AMPA) is the main glyphosate metabolite, and it may be responsible for GR crop damage upon PMG application. PMG degradation into AMPA has hitherto been reckoned mainly as a biological process, produced by soil microorganisms (bacteria and fungi) and plants. In this work, we use density functional calculations to identify the vibrational bands of PMG and AMPA in surface-enhanced Raman spectroscopy (SERS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra experiments. SERS shows the presence of AMPA after glyphosate is deposited from aqueous solution on different metallic surfaces. AMPA is also detected in ATR-FTIR experiments when PMG interacts with metallic ions in aqueous solution. These results reveal an abiotic degradation process of glyphosate into AMPA, where metals play a crucial role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app