Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan.

Perineuronal nets (PNs) in the brains of tenascin-R-deficient (tn-r(-/-)) mice develop in temporal concordance with those of wild-type (tn-r(+/+)) mice. However, the histological appearance of PNs is abnormal in adult tn-r(-/-) mice. Here, we investigated whether similar defects are also seen in dissociated and organotypic cultures from hippocampus and forebrain of tn-r(-/-) mice and whether the structure of PNs could be normalized. In tn-r(-/-) cultures, accumulations of several extracellular matrix molecules were mostly associated with somata, whereas dendrites were sparsely covered, compared with tn-r(+/+) mice. Experiments to normalize the structure of PNs in tn-r(-/-) organotypic slice cultures by depolarization of neurons, or by co-culturing tn-r(+/+) and tn-r(-/-) brain slices failed to restore a normal PN phenotype. However, formation of dendritic PNs in cultures was improved by the application of tenascin-R protein and rescued by polyclonal antibodies to aggrecan and a bivalent, but not monovalent form of the lectin Wisteria floribunda agglutinin. These results show that tenascin-R and aggrecan are decisive contributors to formation and stabilization of PNs and that tenascin-R may implement these functions by clustering of aggrecan. Proposed approaches for restoration of normal PN structure are noteworthy in the context of PN abnormalities in neurological disorders, such as epilepsy, schizophrenia and addiction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app