JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement.

Acta Biomaterialia 2014 December
Human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) are a promising source of patient-specific stem cells with great regenerative potential. There has been no report on NEL-like protein 1 (NELL1) gene modification of iPSC-MSCs. The objectives of this study were to genetically modify iPSC-MSCs with NELL1 overexpression for bone tissue engineering, and investigate the osteogenic differentiation of NELL1 gene-modified iPSC-MSCs seeded on Arg-Gly-Asp (RGD)-grafted calcium phosphate cement (CPC) scaffold. Cells were transduced with red fluorescence protein (RFP-iPSC-MSCs) or NELL1 (NELL1-iPSC-MSCs) by a lentiviral vector. Cell proliferation on RGD-grafted CPC scaffold, osteogenic differentiation and bone mineral synthesis were evaluated. RFP-iPSC-MSCs stably expressed high levels of RFP. Both the NELL1 gene and NELL1 protein levels were confirmed higher in NELL1-iPSC-MSCs than in RFP-iPSC-MSCs using RT-PCR and Western blot (P<0.05). Alkaline phosphatase activity was increased by 130% by NELL1 overexpression at 14days (P<0.05), indicating that NELL1 promoted iPSC-MSC osteogenic differentiation. When seeded on RGD-grafted CPC, NELL1-iPSC-MSCs attached and expanded similarly well to RFP-iPSC-MSCs. At 14days, the runt-related transcription factor 2 (RUNX2) gene level of NELL1-iPSC-MSCs was 2.0-fold that of RFP-iPSC-MSCs. The osteocalcin (OC) level of NELL1-iPSC-MSCs was 3.1-fold that of RFP-iPSC-MSCs (P<0.05). The collagen type I alpha 1 (COL1A1) gene level of NELL1-iPSC-MSCs was 1.7-fold that of RFP-iPSC-MSCs at 7days (P<0.05). Mineral synthesis was increased by 81% in NELL1-iPSC-MSCs at 21days. In conclusion, NELL1 overexpression greatly enhanced the osteogenic differentiation and mineral synthesis of iPSC-MSCs on RGD-grafted CPC scaffold for the first time. The novel NELL1-iPSC-MSC seeded RGD-CPC construct is promising for enhancing bone engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app