Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition.

Analytica Chimica Acta 2014 October 11
Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or CC-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After (13)C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of (13)C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house (13)C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5), and olivetonide (6).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app