JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Determination of human insulin and its analogues in human blood using liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS).

The qualitative and quantitative determination of insulin from human blood samples is an emerging topic in doping controls as well as in other related disciplines (e.g. forensics). Beside the therapeutic use, insulin represents a prohibited, performance enhancing substance in sports drug testing. In both cases accurate, sensitive, specific, and unambiguous determination of the target peptide is of the utmost importance. The challenges concerning identifying insulins in blood by liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS) are detecting the basal concentrations of approximately 0.2 ng/mL and covering the hyperinsulinaemic clamps at > 3 ng/mL simultaneously using up to 200 μL of plasma or serum. This is achieved by immunoaffinity purification of the insulins with magnetic beads and subsequent separation by micro-scale liquid chromatography coupled to ion mobility / high resolution mass spectrometry. The method includes human insulin as well as the synthetic or animal analogues insulin aspart, glulisine, glargine, detemir, lispro, bovine, and porcine insulin. The method validation shows reliable results considering specificity, limit of detection (0.2 ng/mL except for detemir: 0.8 ng/mL), limit of quantification (0.5 ng/mL for human insulin), precision (CV < 20%), linearity (r > 0.99), recovery, accuracy (>90%), robustness (plasma/serum), and ion suppression. For quantification of human insulin a labelled internal standard ([[(2) H10 ]-Leu(B6,B11,B15,B17) ] - human Insulin) is introduced. By means of the additional ion mobility separation of the different analogues, the chromatographic run time is shortened to 8 min without losing specificity. As proof-of-concept, the procedure was successfully applied to different blood specimens from diabetic patients receiving recombinant synthetic analogues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app