JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel tetramethylpyrazine bis-nitrone (TN-2) protects against 6-hydroxyldopamine-induced neurotoxicity via modulation of the NF-κB and the PKCα/PI3-K/Akt pathways.

INTRODUCTION: The natural product tetramethylpyrazine (TMP) has a variety of biologic activities, including neuroprotection. Nitrones are powerful free radical scavengers. We have designed and synthesized a TMP derivative, TN-2, which is armed with two nitrone moieties.

AIMS: In this study, we investigated the neuroprotective effect of TN-2 against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro and in zebrafish.

METHODS: PC12 cells, zebrafish and rats were exposed to 6-OHDA challenge. MTT assay, LDH release, Hoechst staining, DAF-FM staining, luciferase reporter construct transfection, and western blotting were applied to detect cell viability, apoptosis, intracellular nitric oxide (NO), NF-κB transcriptional activity and proteins expression. In zebrafish, whole-mount staining and real-time PCR were performed to quantify dopaminergic neurons and mRNA expression. Hematoxylin and eosin staining and immunohistochemistry for glial fibrillary acidic protein were used to detect the astrocyte activation in the unilateral 6-OHDA rat model.

RESULTS: TN-2 but not TMP exhibited potent neuroprotective effect against 6-OHDA-induced apoptosis in PC12 cells. Moreover, TN-2 prevented dopaminergic neuron loss and suppressed mRNA expression of pro-inflammatory genes, including IL-1β, TNF-α and COX-2, in 6-OHDA-treated zebrafish. TN-2 remarkably attenuated microglial/astrocyte activation in the unilateral 6-OHDA rat model. The mechanistic study demonstrated that TN-2 inhibited over-production of intracellular NO and protein expression of inducible nitric oxide synthase through down-regulating NF-κB activity. Additionally, the PKCα/PI3-K/Akt pathway was also involved in the neuroprotection of TN-2.

CONCLUSION: These results suggest that TN-2 protected against 6-OHDA-induced neurotoxicity via modulating the NF-κB-medicated neuroinflammation and PKCα/PI3-K/Akt pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app